首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43635篇
  免费   4958篇
  国内免费   2545篇
电工技术   1015篇
技术理论   2篇
综合类   2712篇
化学工业   3851篇
金属工艺   5625篇
机械仪表   6438篇
建筑科学   777篇
矿业工程   634篇
能源动力   588篇
轻工业   1343篇
水利工程   185篇
石油天然气   1553篇
武器工业   636篇
无线电   15160篇
一般工业技术   6219篇
冶金工业   1024篇
原子能技术   410篇
自动化技术   2966篇
  2024年   102篇
  2023年   888篇
  2022年   1134篇
  2021年   1563篇
  2020年   1458篇
  2019年   1227篇
  2018年   1122篇
  2017年   1466篇
  2016年   1445篇
  2015年   1467篇
  2014年   2074篇
  2013年   2721篇
  2012年   2671篇
  2011年   2476篇
  2010年   1886篇
  2009年   1991篇
  2008年   2215篇
  2007年   2872篇
  2006年   2755篇
  2005年   2525篇
  2004年   2309篇
  2003年   1945篇
  2002年   1748篇
  2001年   1604篇
  2000年   1315篇
  1999年   1099篇
  1998年   868篇
  1997年   755篇
  1996年   718篇
  1995年   592篇
  1994年   524篇
  1993年   469篇
  1992年   347篇
  1991年   288篇
  1990年   192篇
  1989年   95篇
  1988年   66篇
  1987年   25篇
  1986年   28篇
  1985年   14篇
  1984年   23篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1975年   5篇
  1959年   4篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
11.
Direct writing is a unique means to align anisotropic particles for the fabrication of textured ceramics by templated grain growth (TGG). We show that alignment of tabular barium titanate (BT) template particles (20–40 μm width and 0.5–2 μm thickness) in a PIN-PMN-PT matrix powder (d50 = 280 nm) is significantly improved during direct writing using anisotropic nozzles at high printing rates. The particle orientation distribution in as-printed filaments, and the texture orientation distribution in sintered ceramic filaments are shown to directly correlate with COMSOL Multiphysics-predicted torque distributions for direct writing with aspect ratio 2, 3 and 5 oval nozzles. Electromechanical strain properties of the textured piezoelectric ceramics significantly improved relative to random ceramics when printed with anisotropic nozzles. Simulations of aspect ratio 20 nozzles and nozzles with interior baffles demonstrate significantly increased torque and near elimination of constant shear stress cores (i.e. plug flow).  相似文献   
12.
The development of the Internet of things has prompted an exponential increase in the demand for flexible, wearable devices, thereby posing new challenges to their integration and conformalization. Additive manufacturing facilitates the fabrication of complex parts via a single integrated process. Herein, the development of a multinozzle, multimaterial printing device is reported. This device accommodates the various characteristics of printing materials, ensures high-capacity printing, and can accommodate a wide range of material viscosities from 0 to 1000 Cp. Complete capacitors, inclusive of the current collector, electrode, and electrolyte, can be printed without repeated clamping to complete the preheating, printing, and sintering processes. This method addresses the poor stability issue associated with printed electrode materials. Furthermore, after the intercalation of LiFePO4 with Na ions, X-ray photoelectron spectroscopy and X-ray diffraction results reveal that the Na ions permeate the interlayer structure of LiFePO4, enhancing the ion migration channels by increasing the ion transmission rate. A current rate of 2.5 mAh ensures >2000 charge/discharge cycles, while retaining a charge/discharge efficiency of 96% and a discharge capacity of 91.3 mAh g−1. This manufacturing process can provide conformal power modules for a diverse range of portable devices with various shapes, improving space utilization.  相似文献   
13.
The present study investigated the effect of as-built and post heat-treated microstructures of IN738LC alloy fabricated via selective laser melting process on high temperature oxidation behavior.The as-built microstructure showed fine cell and columnar structure due to high cooling rate.Ti element segrega-tion was observed in inter-cell/inter-columnar area.After post heat-treatment,the initially-observed cell structure disappeared,instead bimodal Ni3(Al,Ti)particles formed.High temperature(1273 K and 1373 K)oxidation test results showed parabolic oxidation curves regardless of temperature and initial microstructure.The as-built IN738LC fabricated via the selective laser melting process displayed oxida-tion resistance similar to or slightly better than that of IN738LC fabricated via wrought or cast process.Heat-treated SLM IN738LC,although had similar oxidation weight-gain values to those of the SLM as-built material at 1273 K,showed relatively better oxidation resistance at 1373 K.Bimodal Ni3(Al,Ti)precipitate formed in the post heat treatment changed the local chemical composition,thereby led to changes in alumina former/chromia former location and fraction on the alloy surface.It was concluded that in heat-treated IN738LC increased alumina former fraction was found,and this resulted in excellent oxidation resistance and relatively low weight-gain.  相似文献   
14.
Cancer remains an intractable medical problem. Rapid diagnosis and identification of cancer are critical to differentiate it from nonmalignant diseases. High-throughput biofluid metabolic analysis has potential for cancer diagnosis. Nevertheless, the present metabolite analysis method does not meet the demand for high-throughput screening of diseases. Herein, a high-throughput, cost-effective, and noninvasive urine metabolic profiling method based on TiO2/MXene-assisted laser desorption/ionization mass spectrometry (LDI-MS) is presented for the efficient screening of bladder cancer (BC) and nonmalignant urinary disease. Combined with machine learning, TiO2/MXene-assisted LDI-MS enables high diagnostic accuracy (96.8%) for the classification of patient groups (including 47 BC and 46 ureteral calculus (UC) patients) from healthy controls (113 cases). In addition, BC patients can also be identified from noncancerous UC individuals with an accuracy of 88.3% in the independent test cohort. Furthermore, metabolite variations between BC and UC individuals are investigated based on relative quantification, and related pathways are also discussed. These results suggest that this method, based on urine metabolic patterns, provides a potential tool for rapidly distinguishing urinary diseases and it may pave the way for precision medicine.  相似文献   
15.
激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。  相似文献   
16.
A cheap and commercially available small molecule (namely EPPDI) is introduced to the active layer of N2200-based all polymer solar cells as a solid additive. EPPDI at the optimal ratio can improve the D-A nano-scale morphology and reduce trap density of the active layer by filling morphological spaces. As a result, the photovoltaic performance of the resulting devices based on PF2:N2200 are increased from 6.28% to 7.03% with significantly enhanced fill factor. This work demonstrates a facile approach for improving the performance of all polymer solar cells.  相似文献   
17.
Femtosecond pulses from a Ti:Sapphire laser were used to irradiate specimens of yttria-stabilised (35% mol) tetragonal zirconia (Y-TZP) with the purpose of studying the effects of the irradiations on their surface properties and morphology after ageing. Zirconia disks were divided into eight groups (n = 32) according to their surface treatment and subsequent ageing: Control: no treatment; sandblasting: Al2O3 sandblasting 50 μm; and ultrashort laser pulses irradiation with 25 μJ pulses, considering two different scanning steps based on the width between two grooves. These groups were duplicated and submitted to ageing. The surfaces were analysed using scanning electron microscopy (SEM), and X-ray diffraction. A finite element analysis, a biaxial flexure test, as well as fractographic and Weibull analyses, were performed. The strengths of the disks were statistically different for the treatment factor, and the principal stresses seemed to be concentrated at the centre of the specimens, as predicted by the computer simulations. Ageing decreased the strengths for all groups and increased the Weibull modulus for the laser group with the 40 μm-width between two grooves. The sandblasting group presented the highest monoclinic phase peak. Although the most significant strength was found within the sandblasting group, the phase transformation was favourable to the laser groups. The Weibull modulus was higher for the laser group with the 60 μm-width between two grooves, confirming the highest homogeneity of its failure distribution. Regardless of the surface treatment, strength was decreased with ageing in all groups. The femtosecond Ti:Sa ultra-short pulse laser irradiation can be suggested as an alternative to the gold standard sandblasting in long-term Y-TZP zirconia rehabilitations, such as crowns and veneers.  相似文献   
18.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
19.
The production of ceramic matrix composites (CMC) based on C/C-SiC is still very cost-intensive and therefore only economical for a few applications. The fabrication of the preforms involves many costs that need to be reduced. In this work, the shaping of the CFRP-preforms is realized by thermoset injection molding, which enables large-scale production. The polymeric matrix used is a multi-component matrix consisting of novolak resin, curing agent and lubricant. Six millimeter chopped carbon fiber with a proportion of 50 wt.% were used as a reinforcement. These ingredients are processed by an industrial equipment for compounding and injection molding in order to manufacture a CFRP demonstrator representing a brake disc. Test specimens are cut out of the demonstrator in different directions in order to investigate influences of flow direction and weld lines on microstructural and mechanical properties. Afterward, the CFRP samples were converted to C/C-SiC composites by the liquid silicon infiltration process. The article addresses the flow behavior of the compound during the injection molding and the building of the weld lines in the demonstrator. In addition, results of the directional dependence of the microstructural and mechanical properties within the fabricated disc in the different production steps are presented.  相似文献   
20.
In both developing and industrialized/developed countries, various hazardous/toxic environmental pollutants are entering water bodies from organic and inorganic compounds (heavy metals and specifically dyes). The global population is growing whereas the accessibility of clean, potable and safe drinking water is decreasing, leading to world deterioration in human health and limitation of agricultural and/or economic development. Treatment of water/wastewater (mainly industrial water) via catalytic reduction/degradation of environmental pollutants is extremely critical and is a major concern/issue for public health. Light and/or laser ablation induced photocatalytic processes have attracted much attention during recent years for water treatment due to their good (photo)catalytic efficiencies in the reduction/degradation of organic/inorganic pollutants. Pulsed laser ablation (PLA) is a rather novel catalyst fabrication approach for the generation of nanostructures with special morphologies (nanoparticles (NPs), nanocrystals, nanocomposites, nanowires, etc.) and different compositions (metals, alloys, oxides, core-shell, etc.). Laser ablation in liquid (LAL) is generally considered a quickly growing approach for the synthesis and modification of nanomaterials for practical applications in diverse fields. LAL-synthesized nanomaterials have been identified as attractive nanocatalysts or valuable photocatalysts in (photo)catalytic reduction/degradation reactions. In this review, the laser ablation/irradiation strategies based on LAL are systematically described and the applications of LAL synthesized metal/metal oxide nanocatalysts with highly controlled nanostructures in the degradation/reduction of organic/inorganic water pollutants are highlighted along with their degradation/reduction mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号